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• Developed models to rapidly predict the properties of secondary 
explosive compounds from molecular structure alone
– Quantitative structure-activity/property relationships (QSAR/QSPRs) use 

regression or classification algorithms to relate structural features to properties 
– Density, melting temperature, vapor pressure, impact sensitivity, oral rat LD50 

(LD50), 48 hour Daphnia magna LC50 (LC50DM), 96 hour fathead minnow LC50 
(LC50FM), 40 hour Tetrahymena pyriformis IGC50 (IGC50), and bioaccumulation 
factor (BCF)

• Statistically validated QSAR/QSPR’s for accuracy, applicability domain 
– Accuracy quantified by (repeated) nested five-fold cross validation

• Root mean square error, mean absolute error, median error, Pearson correlation coefficient

– Applicability domain by Tanimoto similarity to training set, predicted value
• Gauge reliability of property predictions for new and unknown compounds

• LiveDesign platform hosts QSAR/QSPR models, other tools  
– Models available in easy to use, online interface

BOTTOM LINE UP FRONT
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• Objective: using a dataset of “ground truth” data, establish 
correlations between the molecular structure and physical properties 
of known compounds. Use these correlations to predict the physical 
properties of new compounds from only their molecular structure.

• Requirements for a QSAR/QSPR model:
– Dataset of molecular structures and their properties
– Routine to represent molecular structures in a machine understandable way
– Algorithm to elucidate correlations between molecular representations and the 

corresponding physical properties
– Criteria to evaluate the accuracy of correlations when applied to new compounds

• Agenda:
– Background machine learning & QSAR/QSPR concepts and terminology
– Technical aspects of QSAR/QSPR model development
– Evaluation of accuracy and applicability of the developed models
– Use of the models in new compound discovery workflow

SCOPE AND AGENDA
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Quantitative Structure-Activity/Property 
Relationship Models for Secondary Explosive 
Compounds
Fundamental machine learning & QSAR/QSPR concepts and terminology
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• Usage of terms varies, but these are common definitions
• Subsets of machine learning – unsupervised/supervised learning

– Unsupervised learning – finding patterns or groupings within unlabeled data
• Clustering unlabeled photos based on the content of each photo

– Supervised learning – modeling using labeled data with a known “ground truth”
• Predicting the selling price of homes based on data

OVERVIEW OF TERMS

Artificial Intelligence
Machine Learning

QSAR/QSPR
Imitating intelligent 

behavior using logic, 
if-then rules, 

machine learning 
techniques

Using statistical 
techniques and 

models to perform 
tasks with data

Using chemical structural 
information to make property 

predictions with machine 
learning techniques
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• Modeling error – irreducible and reducible
– Irreducible error is error inherent in the “ground truth” input data

• Irreducible because model alterations cannot resolve this (“garbage in, garbage out”)

– Reducible error is error attributable to model
• Bias – difference between model prediction and “ground truth” value

• Variance – variability of model over perturbations of initial conditions, or “ground truth” data 

• Need to balance bias and variance to create a model that minimizes 
prediction error for given data while still generalizing well to new data 

ERROR IN MACHINE LEARNING

High bias, low variance
Underfitting

Low bias, low variance
Good balance

Low bias, high variance
Overfitting
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• Minimizing error with supervised regression models
– Model selection – Linear, logistic, k-nearest neighbors, kernel ridge regression 

(KRR), support vector machines (SVM), decision trees, neural networks
– Regularization – L1 regularization, L2 regularization, dropout
– Model ensembling – combining multiple models to reduce bias and variance

• For small structured datasets ensemble decision tree models are 
consistently among the best performing models
– Exhibit excellent predictivity
– High level of interpretability 
– Relatively computationally inexpensive
– Hyperparameters easily adjusted to needs of a given dataset

• Gradient boosting algorithms
– CatBoost
– LightGBM
– XGBoost

TYPES OF MODELS
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GRADIENT BOOSTING

Input Dataset

Train decision tree 

Predict on training data
Calculate residual prediction error

Use residual error as new training input

Train decision tree 

Predict on training data
Calculate residual prediction error

Use residual error as new training input

Train decision tree 

Predict on training data
Calculate residual prediction error

Use residual error as new training input

Sum outputs of each tree

Prediction
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Quantitative Structure-Activity/Property 
Relationship Models for Secondary Explosive 
Compounds
Model Development
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• A QSAR/QSPR model needs:
– Dataset of molecular structures and their physical properties

• Molecules represented via simplified molecular-input line-entry system (SMILES)

– Routine to represent molecular structures in a machine understandable way
• RDKit – cheminformatics python library

– Algorithm to elucidate correlations between molecular representations and the 
corresponding physical properties
• XGBoost, dask, scikit-learn, hyperopt – machine learning python libraries

– Criteria to evaluate the accuracy of correlations when applied to new compounds
• scikit-learn, SciPy, NumPy, pandas – math and data visualization python libraries

QSAR/QSPR MODEL DEVELOPMENT



APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

11

DATASETS

Physical 
Property

# Compounds Type Compounds Sources

Density 15,435 Small molecules, drug-likes, energetics ochem.eu, 
EMD

Melting temperature 3,171 Small molecules, drug-likes, energetics DPG, EMD

Vapor pressure 3,268 Small molecules, pesticides, drug-likes, energetics ochem.eu, 
EMD

Impact sensitivity 308 Energetics Didier Mathieu

Oral rat LD50 7,294 Small molecules, pesticides, drug-likes EPA T.E.S.T.

48 hour Daphnia 
magna LC50 

353 Small molecules, pesticides, drug-likes EPA T.E.S.T.

96 hour fathead 
minnow LC50 

823 Small molecules, pesticides, drug-likes EPA T.E.S.T.

40 hour Tetrahymena 
pyriformis IGC50 

1,792 Small molecules, pesticides, drug-likes EPA T.E.S.T.

Bioaccumulation factor 672 Small molecules, pesticides, drug-likes EPA T.E.S.T.



APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

12

• Sources of data
– Didier Mathieu impact sensitivity dataset (Didier Mathieu)

• Mathieu, D., "Sensitivity of Energetic Materials: Theoretical Relationships to Detonation Performance and 
Molecular Structure“, Ind. Eng. Chem. Res., vol 56, no. 29, 2017, pp. 8191-8201

– Jean-Claude Bradley double plus good melting point dataset (DPG)
• Bradley, J-C., Lang, A., Williams, A.J., “Jean-Claude Bradley double plus good (highly curated and 

validated) melting point dataset”, 2019.

– Energetic Materials Database (EMD)
• Britt, C., and Hrudka, J., “Energetic Materials Database”, CS Squared LLC, 2019.

– EPA Toxicology Estimation Software Tool (EPA T.E.S.T.)
• Martin, T., “User’s Guide for T.E.S.T. (Toxicity Estimation Software Tool), U.S EPA/National Risk 

Management Research”, 2016.

– Online Chemical Modeling Environment (ochem.eu)
• Tetko, V. I., et al., “Online chemical modeling environment (OCHEM): web platform for data storage, model 

development and publishing of chemical information”, J. Comput. Aided Mol. Des., vol. 25, no. 6, 2011, pp. 
533-554

• Datasets curated prior to use in model building
– No duplicates, salts, charged species, mixtures
– No compounds containing elements besides C, H, N, O, B, P, S, F, Cl, Br, and I

DATASETS
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• Sample rows from melting point dataset:

– Convert SMILES to numeric format that can be used by XGBoost

• Use RDKit to calculate 1447 molecular features
– Zero dimensional: Atom counts, atom ratios, oxygen balance, etc.
– One dimensional:  Bond counts, bond ratios, information indices, etc.
– Two dimensional: Functional group fragments, fingerprints, etc.
– Three dimensional: WHIM, geometric distances, inertial, etc.

• Property and molecular structure now represented numerically:

NUMERICALLY REPRESENTING MOLECULES

CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O

Atom counts
Functional group counts
Estate fingerprint
Etc.

Compound SMILES String Melting Point (°C)
HMX [O-][N+](=O)N1CN(CN(CN(C1)[N+](=O)[O-])[N+](=O)[O-])[N+](=O)[O-] 275
RDX [O-][N+](=O)N1CN(CN(C1)[N+](=O)[O-])[N+](=O)[O-] 204
LLM-200 Nc1nonc1/N=[N+](\c1nonc1N)/O 182
TNT [O-][N+](=O)c1cc([N+](=O)[O-])c(c(c1)[N+](=O)[O-])C 81
BODN O=[N+](OCC1=NC(C2=NOC(CO[N+]([O-])=O)=N2)=NO1)[O-] 82

[275, 1.959, 0.476, 0.4, 0, … 12.453]

N N

N

NO2

NO2O2N
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MOLECULAR FEATURE CALCULATION & 
FEATURE SELECTION

• Calculation of molecular features not computationally expensive
– RDKit python library well optimized for an interpreted language
– Calculation of molecular features is a trivially parallelized task

• Feature selection using Boruta method
– Feature selection can improve model accuracy, interpretability, decrease wall-time
– Duplicate each feature, y-scramble the rows creating “shadow features”
– Use shadow features and original features to train a random forest model 
– Rank feature importance within random forest model, reject original features that 

perform worse than specified percentage of shadow features
– Features that perform better than random noise are retained

Number Threads Calculation time: 
Intel i7 7700 (s)

Calculation time: 
AMD 2950x (s)

1 386 496
2 215 254
4 121 140
8 87 73
16 N/A 48
32 N/A 42

Kursa, B. M., Jankowski, A., Rudnicki, W. R., “Boruta – A system for feature 
selection” Fundamenta Informaticae, vol. 101, 2010, pp. 271–285, doi: 
10.3233/FI-2010-288
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Fold #1

Fold #2

Fold #3

Fold #4

Fold #5

Training

Validation

Entire Dataset• Bayesian 
hyperparameter tuning
– Hyperparameters are 

specifications for how a 
model is constructed, i.e., 
number of boosting 
rounds, max depth, etc.

– Generate distribution of 
possible hyperparameters

– Test a set of 
hyperparameters with 
cross-validation, use test 
results to inform the 
selection of the next set of 
hyperparameters to try

– Converge toward optimal 
set of hyperparameters

HYPERPARAMETER OPTIMIZATION

Bergestra, J., Yamins, D., Cox, D. D., “Making a science of model search: 
hyperparameter optimization in hundreds of dimensions for vision architectures” 
ICML'13: Proceedings of the 30th International Conference on International 
Conference on Machine Learning, vol. 28, 2013, pp. 115-123
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NESTED K-FOLD CROSS VALIDATION

Split #1

Split #2

Split #3

Split #4

Split #5

Training

Test

Entire Dataset

Using best 
hyperparameters, train 

model, evaluate 
performance on test set

For each split, use training folds for the nested 
cross-validation hyperparameter selection

Inner Training Folds

• Algorithm:
– Divide data into k folds
– Withhold each fold 

once as a test fold, use 
remaining folds for 
feature selection, 
hyperparameter 
selection, and training

– Divide training folds 
again into k equal inner 
training folds, select 
features

– Hyperparameters 
selected with cross 
validation

– Use hyperparameters 
to train model with all 
inner training folds

– Evaluate model on the 
withheld test set

– Repeat for each split
• Repeat algorithm
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GPU TIME TO TRAIN

• Cross validation can be time consuming
– 5 rounds CV * 5 outer folds * 4 inner folds * 1000 rounds per inner fold = 100,000 

total XGBoost models for model qualification
• Parallelize construction of XGBoost models on GPU’s

– Benchmark with Covertype dataset
– Use dask to parallelize construction of inner folds across 4 x 2080ti’s
– Speedup of ~5x-10x depending on model

Dataset size (mb) Dataset size (%) i7 7700 avg. time, 
10x runs (s)

2950x avg. time, 10x 
runs (s)

1 x 2080ti avg. 
time, 10x runs (s)

256 100 108.85 34.99 10.36

128 50 53.63 19.07 7.01

64 25 31.14 11.61 5.15

25.5 10 17.02 7.46 4.3

2.55 1 6.26 2.08 3.38

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, 
CA: University of California, School of Information and Computer Science
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Quantitative Structure-Activity/Property 
Relationship Models for Secondary Explosive 
Compounds
Model Evaluation
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QSAR/QSPR STATISTICAL PROPERTIES

Property MAE RMSE Median R-squared

Density (g/cm³)* 0.0214 0.0364 0.0119 0.988

Melting 
temperature (°C)*

25.5 34.68 19.34 0.873

Vapor pressure 
(Log10(mmHg))*

0.531 0.874 0.271 0.942

Impact sensitivity 
(Log10(H50))

0.458 0.616 0.335 0.629

LD50                     
(-Log10(mol/kg))*

0.420 0.573 0.317 0.638

LC50DM                
(-Log10(mol/L))

0.795 1.065 0.594 0.618

FC50FM                  
(-Log10(mol/L))

0.593 0.827 0.410 0.692

IGC50                   
(-Log10(mol/L))

0.321 0.455 0.223 0.812

BCF (Log10) 0.466 0.625 0.342 0.791

* Results from only one round of external CV
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• Results show variation in CV results dependent on how data is split
– IGC50 (n=1792), 4.5% difference in RMSE

• Results show significant variation dependent on 20% test set split
– IGC50 (n=1792), 27.4% difference in RMSE

REPEATED NESTED CROSS VALIDATION

Property MAE RMSE Median R-Squared (95% 
conf. int.)

IGC50 (-Log10(mol/L)) best fold 0.303 0.4127 0.2284 0.846 (0.819, 0.869)

IGC50 (-Log10(mol/L)) worst fold 0.3729 0.5259 0.2613 0.746 (0.705, 0.782)

Property MAE RMSE Median R-Squared (95% 
conf. int.)

IGC50 (-Log10(mol/L)) best CV 0.3175 0.4452 0.2223 0.820 (0.807, 0.832)

IGC50 (-Log10(mol/L)) worst CV 0.3266 0.4654 0.2259 0.803 (0.789, 0.816)

Krstajic, D., Buturovic, L. J., Leahy, D. E., Thomas, S., “Cross-validation pitfalls when selecting
and assessing regression and classification models” Journal of Cheminformatics, vol. 6, no. 10,
2014, doi: 10.1186/1758-2946-6-10
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• Physical properties of some molecules will be better predicted than 
others, quantify confidence in prediction for specific molecule
– Applicability domain is the chemical space where models will give good predictions
– Predictions for molecules that are similar to training set molecules will be better
– Numeric value of predicted property can also be used to gauge prediction 

accuracy

APPLICABILITY DOMAIN

Training set Test set
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• Applicability domain by chemical similarity
– External prediction for each dataset molecule in process of cross validation
– Quantifiable measure of similarity to the training set

• Use Morgan fingerprints to generate Tanimoto similarities

• Average Tanimoto similarity to the five most similar compounds in the training set

• Applicability domain by predicted property value
– External prediction for each training set molecule in process of cross validation

• Combine similarity and predicted property 
– Create a grid with the value of predicted property on one axis, and similarity to the 

molecules in the training set on the other axis, fill cells with cross validation data
– Find mean absolute, median, root mean square error of each cell
– Determine appropriate cell for new compounds to estimate prediction error

APPLICABILITY DOMAIN

Sheridan, R., “Three Useful Dimensions for Domain Applicability in QSAR
Models Using Random Forest” Journal of Chemical Information and
Modeling, vol. 52, no. 3, 2019, pp. 814–823, doi: 10.1021/ci300004n
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APPLICABILITY DOMAIN
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Quantitative Structure-Activity/Property 
Relationship Models for Secondary Explosive 
Compounds
Implementation in LiveDesign



APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

25

LIVEDESIGN: WEB-BASED COLLABORATION

Enumeration Tools, 
De Novo Design 

Gadget, 
QSAR/QSPR, & 
Quick Properties

Jaguar DFT 
Optimizations & 

HOF Calculations
Desmond MD 
Simulations

• LiveDesign by Schrödinger
– An online informatics platform that allows teams to collaborate, design, and 

experiment in one centralized location
– Enables teams of computational and synthetic chemists and engineers to work 

together and share results on one platform
– Add data, visualize structures, run calculations with a single click
– Keeps data and files in one place that can be easily searched and accessed 
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• Cheminformatics workflows
– Quick Properties: properties calculated in real time, examples: molecular weight, 

CO2 oxygen balance, CO oxygen balance, and nitrogen content 
– QSAR/QSPR Models: density, melting temperature, vapor pressure, impact 

sensitivity, IGC50, LD50, LC50DM, LC50FM, and BCF

• DFT molecular workflows
– Gas phase heat of formation, bond dissociation energy, and thermochemical 

property (internal energy, entropy, enthalpy) calculations

• Molecular dynamics workflows
– Crystal Workflow: density, heat of sublimation, melting point
– Amorphous Workflow: density, heat of sublimation, glass transition temperature

LIVEDESIGN: CAPABILITIES
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LIVEDESIGN: ADDING COMPOUNDS
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LIVEDESIGN: MAKING PREDICTIONS
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RECAP

• Developed models to predict the properties of secondary explosive 
compounds from molecular structure alone
– Fast molecular descriptor calculation, feature selection with Boruta method
– Bayesian hyperparameter optimization
– Models trained in parallel using GPU’s
– Models developed for density, melting temperature, vapor pressure, impact 

sensitivity, IGC50, LD50, LC50DM, LC50FM, and BCF

• Statistically validated QSAR/QSPR’s for accuracy, applicability domain 
– Accuracy quantified by (repeated) nested five-fold cross validation

• Root mean square error, mean absolute error, median error, Pearson correlation coefficient

– Applicability domain by Tanimoto similarity to training set, predicted value
• Gauge reliability of property predictions for new and unknown compounds

• LiveDesign platform hosts QSAR/QSPR models, other tools  
– Models available in easy to use, online interface
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